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ABSTRACT

Experimental analysis of agent strategies in multiagent systems
presents a tradeoff between granularity and statistical confidence.
Collecting a large amount of data about each strategy profile im-
proves confidence, but restricts the range of strategies and profiles
that can be explored. We propose a flexible approach, where mul-
tiple game-theoretic formulations can be constructed to model the
same underlying scenario (observation dataset). The prospect of
incorrectly selecting an empirical model is termed generalization
risk, and the generalization risk framework we describe provides
a general criterion for empirical modeling choices, such as adop-
tion of factored strategies or other structured representations of a
game model. We propose a principled method of managing gener-
alization risk to derive the optimal game-theoretic model for the
observed data in a restricted class of models. Application to a
large dataset generated from a trading agent scenario validates the
method.
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1. INTRODUCTION
Multiagent systems (MAS) research has long relied on both the-

oretical and experimental analysis to understand the implications of
alternative agent behaviors, or strategies. For situations amenable
to analytic modeling, researchers often appeal to the framework of
game theory, attracted by its normative force and generality, as well
as its rich mathematical structure. For scenarios that are too com-
plex or lack directly specified game forms (i.e., payoff or utility
functions), analytic game theory is not immediately applicable. In
such situations, empirical game models [15], where observations
or simulations of agent play are used to construct estimates of their
utility, can support game-theoretic analysis despite lack of explicit
game descriptions.

Empirical game-theoretic models are founded on an underlying
game simulator, which generates outcomes from agent behaviors
taken from an underlying strategy space. The simulator defines
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the system in which the agents participate. Configuration param-
eters may include the number of agents, the allowable actions for
each, possible type realizations (i.e., settings of private information
for the agents), and other factors. Though the full strategy space
allowed by the game simulator may be large or infinite, due to
computational constraints empirical game models usually restrict
the strategy space to a small number of heuristically defined strate-
gies. Even within this restricted space, modeling accuracy is lim-
ited by statistical sampling, given the inherent stochastic behavior
of typical simulation environments. Given a limited computational
budget, modelers must choose carefully which strategy profiles to
simulate and how many samples of those profiles to take.

One benefit of these empirical models is that game representa-
tions of a MAS can be made with varying degrees of fidelity to the
underlying scenario. For instance, a stock market scenario may in-
volve thousands of participants with a potentially infinite number
of available trading strategies. A simulation of the scenario may
be reduced to a manageable number of representative participants
each selecting from a handful of promising strategies. Depending
on the computational budget, an analyst may increase or decrease
the population size or available trading strategies in the simulator.

Empirical game-theoretic techniques have expanded researchers’
capabilities of analyzing complex strategic scenarios by enabling
increasingly faithful models of interaction. However, with the in-
creased complexity comes an increase in modeling risk. Increas-
ingly complex simulations, all else being equal, are more costly in
terms of computation requirements. Moreover, increasing the com-
plexity of the simulation generally entails increasing the size of the
potential strategy space used in simulating the scenario. Because
the strategy space grows while the number of heuristic strategies
that can be feasibly analyzed is at best held constant, there is an in-
creasing chance that a useful strategy is omitted from the heuristic
strategies in analysis. This risk is endemic in modeling MAS sce-
narios and can be mitigated only partially by increments in compu-
tational budget.

A second source of risk arises from the analysis of the avail-
able observations. Once the simulator and strategy sets are defined,
then observations can be collected and an empirical game model
estimated from the observation data. The empirical game model
provides an estimate for the utility of playing a profile within its
profile space. In much of the previous research on empirical games,
the strategy space of the empirical game is assumed identical to
that of underlying simulation. We relax this constraint, allowing
models where the strategy sets or even players do not correspond
precisely to the base notions defined by the simulator. For instance,
an empirical game model may treat two strategies that are distinct
for the simulator as interchangeable in its own strategy space. This
coarsens the model the empirical game uses to predict payoffs, re-
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ducing the model’s complexity compared to the finer-grained strat-
egy space of the simulator.

Entertaining multiple candidate models of varying complexity
provides useful flexibility. A more complex model may capture
observations better than a simpler one, however it may also be more
susceptible to fitting spurious information in the observations. We
term this the generalization risk associated with an empirical game
model. In the game-theoretic context, the consequence of incorrect
generalization could be that profiles that appear stable are actually
unstable, or vice versa. Thus, we develop a framework that allows
us to compare candidate models and make an appropriate selection
based on the model’s predictive power. To illustrate the flexibility
of this approach we describe two modeling choice scenarios for
empirical games: the equivalent strategy model and the factored
model. These models take an existing strategy space and transform
it in different ways. In our experimental analysis, Section 4, we
construct a hierarchy of equivalent strategy models which are used
to analyze a game of interest.

Our motivating problem for this analysis is the Trading Agent
Competition’s Supply Chain Management game (TAC/SCM). The
annual Trading Agent Competition (TAC) series of international re-
search tournaments was initiated to promote research and education
in the technology underlying trading agents.1 At the core of TAC
are several games, market-based scenarios where multiple agents
compete to exchange goods and services at dynamically negotiated
prices. The first TAC tournament, in July 2000, introduced the TAC
Travel game [16]. A second game, in the domain of supply chain
management, has been played since 2003 [3]. CAT, the third game
in the series, is a market design game in which agents play the role
of market specialists [9]. A new game in the domain of advertising
auctions (TAC/AA) is scheduled to debut in 2009.

A key feature of all TAC games is that—like most realistic mar-
ket environments—they are sufficiently complicated (severely im-
perfect and incomplete information revealed over time throughout
dynamic activity) to defy analytic solution. In such situations, em-
pirical game-theoretic methods can often provide a useful basis for
strategic reasoning. Typically in this approach, a game structure
(player and profile space) is fixed and then simulation is under-
taken to provide estimates for the utility function of the under-
lying game. Once a sufficient number of observations have been
made, a suite of empirical game-theoretic analysis methods can be
employed. Previous research has developed equilibrium-inspired
methods for ranking strategies and visualizing deviations for em-
pirical games such as TAC [6]. Also useful in empirical modeling
are techniques to reduce the size of the game space through clus-
tering profiles [5, 17], construct compact game factorizations [4],
and exploit strategic independence [8]. These approaches define
reduced or simplified game structures which, when applicable, re-
quire fewer observations to support accurate estimates of the util-
ity function. Complementary to the modeling options are search
methods that focus on identifying stable strategies under a limiting
computational budget [7, 11, 12, 13]. To date, there has been little
research on expanding the fixed game form methodologies to test
multiple game form hypotheses on the same observation set. In
this paper we develop a general framework for comparing the fit of
multiple game forms on observational MAS data.

The subsequent portions of this analysis are arranged as fol-
lows. In Section 2, we introduce our framework for empirical
games based on observations from a simulator. In Section 3, we
present our approach to managing generalization risk and discuss
two applicable classes of empirical game models, equivalent strat-
1See http://tradingagents.org, and http://www.
sics.se/tac.

egy models and factored models. In Section 4, we apply this ap-
proach to the case of equivalent strategy modeling, using the do-
main of TAC/SCM. Our experiments employ data taken from years
of observations on this domain. We then finish with a small discus-
sion of extensions of this technique to other game-theoretic analysis
methods.

2. EMPIRICAL GAME FRAMEWORK
The concept of empirical games has antecedents in both the MAS

and economics literatures. The heuristic-strategy approach of Walsh
et al. [14] explicitly constructs empirical games, and much ex-
perimental work in MAS effectively produces statistical estimates
of payoff functions. In economics, Armantier et al. [2] defined
the concept of constrained strategic equilibrium (CSE) as an ap-
proximation of Bayesian Nash equilibrium (BNE) induced by con-
straints on the strategy space. They went on to show that any se-
quence of CSEs has a subsequence that converges toward a BNE
when the strategy space is compact. Experimental MAS studies
will generally not conform to Armantier et al.’s compactness re-
quirement; nevertheless, their result provides theoretical support
for our expectation that equilibria in empirical games will improve
in approximation to equilibria of the true game as more strategies
are evaluated.

To describe our modeling framework, we extend notation from
Armantier et al. [1, 2]. Let Ω be the set of states of nature and for
each player i, let Ai denote i’s available actions. In a scenario of
N players the joint action space is A =

Q
i∈N Ai and an element

a ∈ A is a joint action. Each player receives a type ξi ∈ Ξi and
the joint type space is defined as Ξ =

Q
i∈N Ξi. A player’s strat-

egy is a measurable function ρi : Ξi → Ai where ai = ρi(ξi).
Pi = {ρi} is player i’s strategy space and P =

Q
i∈N Pi is the

joint strategy space. A joint strategy or profile is thus ρ ∈ P , where
a = ρ(ξ) and ξ is the joint type. The joint opponent strategy space
is denoted P−i =

Q
j∈N\{i} Pj . A mixed strategy σi is a prob-

ability distribution over strategies in Pi, with σi(ρi) denoting the
probability player i will play strategy ρi. The mixed strategy space
for player i is given by Δ(Pi). Similarly, Δ(P ) =

Q
i∈N Δ(Pi)

is the mixed profile space.
In complex multiagent environments, strategies are often best

described procedurally, in effect, as computer programs that take
type information as input and return the selected action or sequence
of environment interactions as their output. For this reason, we
often can do no better than treat these strategies as black boxes,
analyzing them in terms of input-output but not internal structure.
We define a simulator as a function that maps joint strategies to
outcomes, in the form of payoff vectors. Typically, a simulator will
itself be realized as a program that generates type information and
implements the interaction among the participating agents and the
environment.

DEFINITION 1 (SIMULATOR). A simulator is a measurable
function S : Ω × P → R

|N|, where P is the profile space and
N is the set of players.

An individual run of the simulator, or simulation, produces an
observation θ = (ρ, π), where ρ is the strategy profile simulated
and π : N → R is the joint payoff received by the agents. Let
Θ = {θk} be the observation set. A simulator S implicitly defines
a specific game over the set of players N and a profile space P , but
without an explicit utility function as would normally be specified
in a game description. Instead, the observation set generated by the
simulator provides the basis for an estimated game model, which is
what we call the empirical game.
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DEFINITION 2 (EMPIRICAL GAME). An empirical game is a
tuple E = 〈NE , P E , uE , φ, μ〉 where NE is the set of players,
P E is the joint strategy space, and uE is the utility function. The
mappings φ : P → P E and μ : P × R

|NE | → R
|N| relate the

empirical game structure to that of the underlying simulator.

Note that as defined here, the empirical game need not employ the
same player and profile space as the simulator. Indeed, the ob-
servation set will generally not span the full profile space as the
underlying game. Moreover, the most useful game-theoretic model
may not correspond exactly with the profiles simulated. Because
our evidence is statistical, we must consider that the simulator’s
framing of the profile space may contain extraneous information
that can decrease our model’s predictive power. Our formulation of
this tradeoff and proposed criterion to resolve it is in fact the central
contribution of this work.

Accordingly, we use the superscript E notation for NE , P E , and
uE to distinguish the empirical game’s player set, strategy space,
and utility from those of the game underlying the given simulator.
The relationship between these is characterized by the two map-
pings provided as part of the empirical game model. First, the func-
tion φ : P → P E maps profiles in the simulation space to profiles
in the empirical game space, preserving the neighborhood relation
(defined below in terms of deviation) in the simulation space. Sec-
ond, the function μ : P × R

|NE | → R
|N| maps a profile in the

simulator and a payoff in the empirical game to a payoff in the sim-
ulation space. Using these functions we can define an empirical
utility model euE(ρ) = μ(ρ, uE( φ(ρ) ) ), which applies the in-
duced model over the simulation profile space. Note that euE may
be of different dimension than uE . This can occur, for instance, if
the number of players in the empirical game differs from the num-
ber of players in the simulator. For convenience, we also denote
ρE by its equivalent, φ(ρ). Conceptually, the functions φ and μ
allow us to move between the base simulation space and the em-
bedded space given by the empirical game model, while preserving
game-theoretic interpretations of the scenario. In Section 3, we pro-
pose a measure of generalization risk based on squared prediction
error of the model in question with respect to the observed pay-
offs. In principle, we could choose from a multitude of estimators
to minimize this error, such as neural networks or other complex
functional forms, that have no explicit game-theoretic formulation.
The justification for φ and μ in the definition is to ensure that the
estimates can be meaningfully interpreted with respect to the un-
derlying game.

3. GENERALIZATION RISK AND MODEL

SELECTION
Now that we have defined our empirical game framework, we

can address the problem of fitting an empirical model to an obser-
vation set Θ generated by simulation. Because we may be able to
fit multiple models, we require some criterion for selecting among
them. In particular, we would like to be able to evaluate and com-
pare the goodness of fit for different models so that we may identify
which is most useful for analysis. In doing so, we build upon the
rich history of statistical analysis, treating game models as forms
of statistical hypotheses.

A standard measure of loss for a statistical model is the mean of
squared errors with respect to the data. In our context, we define
the loss function L of a candidate empirical game model by

L (Θ, E) =
1

|Θ|
X

θ ∈ Θ

heuE(θ.ρ) − θ.π
iT heuE(θ.ρ) − θ.π

i
,

where θ.ρ and θ.π are the joint strategy and payoffs comprising
the observation θ. We endeavor to find an empirical game model
which minimizes the expected loss E[L (Θ, E)], where Θ is the
random observation set generated from a simulator. Note that be-
cause we do not know the true distribution of Θ, we must estimate
the expected loss using an existing observation set. In our experi-
ments, we use cross-validation on the observation set to construct
this estimate. We outline a k-fold cross-validation procedure in
Section 3.3.

After a selected game model E has been fit to the observation se-
quence, we can analyze its game-theoretic properties. In particular,
we are interested in determining the stability of profiles in terms of
regret, the potential benefit to some player of deviating to a differ-
ent strategy. In order to calculate the regret of a profile, we con-
struct the deviation set for a particular profile in our game model.
In words, the unilateral deviation set is simply the set of profiles in
which a single player has changed its strategy with respect to the
original profile. We define the construction using set notation as
follows.

DEFINITION 3 (UNILATERAL DEVIATION SET). For some E ,
the unilateral deviation set for player i ∈ NE and profile ρ ∈ P E

is

DEi (ρ) = {(ρ̂i, ρ−i) : ρ̂i ∈ P Ei \ {ρi}},
and the corresponding set, unspecified by player, is

DE(ρ) =
[

i∈NE
DEi (s).

Once the profile structure of E is defined and the model induced
from observations, we have an estimate for the utility function.
Note that once an empirical game model has been selected, the
deviations and utility calculations are performed in the embedded
space, not in the original simulation space. We would like a metric
that conveys the loss or regret a player incurs for playing a specific
strategy given its alternatives. The measure of regret should be
minimized at a Nash equilibrium. Alternative forms of this mea-
sure have been proposed in the literature, however we consider the
following notion of regret to be most representative for our pur-
poses.

DEFINITION 4 (REGRET). For some E , the regret of strategy
profile ρ, εE(ρ), is the maximum gain from deviation from ρ by any
player. Formally,

εE(ρ) = max
i ∈ NE , ρ̂ ∈ DEi (ρ) ∪ {ρ}

uEi (ρ̂) − uEi (ρ).

It should be noted that loss calculations used in selecting an em-
pirical game model are not affected by which specific measure of
regret is used. Because of the generality of the loss function, we
can compare many classes of candidate game models for a given
simulation. For the purpose of exposition, we highlight two dif-
ferent modeling choice scenarios that we have identified as useful
in experimental settings. Following our description of each, we
conclude the section with a discussion of our cross-validation tech-
nique and iterative model selection algorithm.

3.1 Equivalent strategy models
In order to motivate the introduction of equivalent strategy mod-

els, we point out the strategy evaluation methodology proposed by
Wellman et al. [18]. The authors systematically explored parame-
terized variations of their TAC travel shopping agent, Walverine.
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The behavior of the agent is defined by a large number of parame-
ters. The effects of a parameter setting are potentially dependent on
the value of other parameters. For instance, two parameters deter-
mine the agent’s bid shading behavior. The first parameter turns the
bid shading on or off and the second parameter determines by how
much the bids are shaded. Clearly, if the first parameter is set to
off, then the second parameter is behaviorally irrelevant. In a facto-
rial design methodology all possible settings would be tested, and
if conducted naively, a great deal of effort will be spent analyzing
duplicate strategies. In this case, it is relatively simple to identify
the behaviorally equivalent strategies, but in many cases it may not
be.

This highlights the general issue that, many times when design-
ing or evaluating strategies, researchers have a set of strategies,
some of which may be copies of other strategies that have sim-
ply been labeled differently. On the other hand, a strategy may be
defined by a very large parameter space in which the behavioral ef-
fects of modifying the parameters are slight or imperceptible. In ei-
ther case, researchers may not know a priori if there are equivalent
strategies in the behavioral sense. Not identifying these equivalent
strategies increases the generalization risk when the observation se-
quence has a relatively small number of observations compared to
the complexity of the empirical game model’s class. We introduce
a game model which uses the concept of equivalent strategies to
form a reduced game.

DEFINITION 5 (EQUIVALENT STRATEGY MODEL). An equiv-
alent strategy empirical game model ESG = 〈N, P, {∼i}, uE〉
constitutes a model for an empirical game where ∼i is an equiva-
lence relation on Pi which forms equivalence classes [ρi] with

• NE = N

• Player i’s strategy set is the set of equivalence classes, i.e.
[ρi] ∈ P Ei

• φ(ρ) = ([ρ1], [ρ2], . . . , [ρ|N|])

• μ(ρ, uE( φ(ρ) ) ) = uE( φ(ρ) ).

The equivalent strategy model forms equivalence class [ρi] from
each relation ∼i where player i may select any element of the
equivalence class with the same result. Thus all elements in [ρi]
are considered different labelings of the same underlying strategy.
In other words, whenever a strategy ρi is observed in a simulation
profile ρ, we replace it with the representative strategy [ρi]. Given
some observation set Θ, we can estimate the empirical utility over
E for a profile uEi (ρE) as the sample mean of the observed pay-
off set {πi|(π, ρ) ∈ Θ and ρE = φ(ρ)}. By dropping the player
parameterization of the equivalent relation in Definition 5, we can
define a similar notion of an equivalent strategy symmetric game.
We use this construction in our analysis of TAC/SCM in Section 4.

3.2 Factored models
In their paper on factoring games [4], Davis et al. introduce an

algebra over games. In this algebra, an empirical game E may be
composed of multiple factor games. For instance, consider a two
factor game model, i.e., an empirical game E that is composed of
two factor games EA and EB , written E = EA ⊗ EB . The strategy
sets in E are constructed using the cross product of the strategies
in each of the factor games EA and EB . Let P A be the strategy
set for game EA and P B for game EB , with respective utility func-
tions uA and uB . Each composite strategy ρ in E is composed of
two factor strategies ρA and ρB , i.e, ρ = (ρA, ρB). The factors
are additive in the utility, so that uE(ρ) = uA(ρA) + uB(ρB). If

a factoring exists for a game, it can greatly reduce the number of
observations required to sufficiently observe game. Once a pro-
posed factorization is defined, the utility function is simply a linear
system of equations over the entries in the factors’ payoff matrices.

Consider an agent participating in a scenario such as TAC/SCM.
Agents are typically constructed in a modular way, exposing be-
havioral parameters. For example, the agent Deep Maize, which is
further discussed in the experiments section, maintains separate pa-
rameters sets for sales and procurement decisions. The TAC/SCM
scenario could be modeled as two separate factor games: one for
sales and the other for procurement. If sales and procurement fac-
torization fit well, this would yield substantial computational sav-
ings in the subsequent sampling analysis.

3.3 Cross-validating Empirical Game Models
In order to compare the generalization risk of differing empir-

ical game models, we construct an estimate for the expected loss
EL . This estimate is calculated using a cross-validation technique
known as k-fold cross-validation. Below we provide a description
of our extension to k-fold cross-validation that restricts how obser-
vations are partitioned into distinct observation sets.

First, we separate the observation set Θ into k distinct partitions
as follows. Let Θρ̂ = {θ ∈ Θ |ρ(θ) = ρ̂}, that is all of the
observations which correspond to the profile ρ̂. For each ρ ∈ P ,
we randomly partition Θρ into k equally sized groups Θρ

1, . . . , Θ
ρ
k.

Each one of the k groups is assigned to one of the new observation
sets such that

Θi =
[

ρ∈P

Θρ
i .

For a given set Θi we define Θ−i = Θ \ Θi. We denote L̂ (Θ, E)
as the estimate for the expected loss given some game model E and
define it as follows

L̂ (Θ, E) =
1

k

kX
i=1

L (Θi, E(Θ−i))

where E(Θ−i) is the result when a game model E is fit from the
observation set Θ−i. We use L̂ (E) without the Θ parameter when
the context is clear.

3.4 Iterative Model Selection in ESMs
In this section, we define an iterative procedure for selecting an

equivalent strategy model (ESM) in an ESM hierarchy. We use an
iterative procedure to select an equivalent strategy model. We pro-
pose this algorithm for symmetric games, but the extension to the
non-symmetric case is straight forward. The algorithm works by
greedily selecting the best pairwise merger of the current partition’s
equivalence classes, until the candidate merger increases expected
loss.

First, note that, due to symmetry, the player indexing on the strat-
egy equivalence relation ∼ is dropped. The algorithm proceeds in
an iterative fashion. In each iteration we keep a set of hypothetical
equivalence relations. We use H(i) to denote the set of equivalence
relations compared in iteration i. We start with a trivial partitioning
of each strategy into its own equivalent class. We denote this ∼(0)

which induces H(0) = {∼(0)}. In each iteration i, we select the
partitioning ∼(i)∈ H(i) which minimizes L̂ .

Let P/ ∼(i) denote the set of equivalence classes induced by the
ith round equivalence relation ∼(i) on P . In the ith round we con-
struct a candidate equivalence relation ∼̂ ∈ H(i) for every distinct
ρa, ρb ∈ P/ ∼(i−1) by merging the two equivalence classes ρa

and ρb.
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Let E(i) be the ESM constructed from ∼(i), the equivalence re-
lation selected in the ith round. If L̂ (E(i−1)) > L̂ (E(i)), then the
process continues to the next iteration. Otherwise the algorithm is
terminated and E(i−1) is selected. Pseudo-code for
ITERATIVE-ESM-SELECTION is given in Algorithm 1.

Algorithm 1 Iterative ESM Selection algorithm.

ITERATIVE-ESM-SELECTION(S, Θ)

1 H(0) ← {∼(0)}
2 Fit E(0) from ∼(0) and Θ
3 i ← 0
4 repeat i ← i + 1

5 Construct H(i) from P/ ∼(i−1)

6 Select ∼(i)= arg min

∼∈ H(i)

L̂ (P/ ∼)

7 Fit E(i) from ∼(i) and Θ

8 until L̂ (E(i−1)) > L̂ (E(i))

9 return E(i−1)

4. EXPERIMENTS
In the following experiments, we consider game models over

observations taken from the TAC Supply Chain Management sce-
nario. In previous work [6], Jordan et al. describe the construction
of the data for the TAC/SCM experiments. We repeat relevant por-
tions of the descriptions in this section, where appropriate, to give
a sense of the experimental process used.

We experimentally evaluate the ITERATIVE-ESM-SELECTION
algorithm on two TAC/SCM data sets. The first test is designed
to confirm identification of a relabeled strategy in the original data
set. The second explores a full strategy set from the Deep Maize
2008 candidate set. Once a partitioning is found for the full strat-
egy set, we subsequently test reduced strategy sets to confirm that
the full strategy set partitioning holds even in the reduced space.
Before launching into analysis of TAC/SCM strategies, we illus-
trate a simple example.

4.1 Simple Equivalent Strategy Game
Consider the following two-player matrix game whose players

are specified in Table 1. The column player has a single action, C,
and the row player has three actions: A, B, and B̂.

C
A α, 0
B 0, 0
B̂ 0, 0

Table 1: Simple duplicate game

Say, for instance, that a simulator modeling this scenario adds
zero-mean, unit-variance Gaussian noise to the row player’s score.
Discounting noise, the strategies B and B̂ are equivalent. Addition-
ally, when α is small A, B, and B̂ are approximately the same. Us-
ing our partitioning scheme we have five basic strategy partitions:
A, B, B̂; A, {B, B̂}; {A, B}, B̂; {A, B̂}, B; and {A, B, B̂}.
Clearly, we would like to discover that B and B̂ are equivalent.
Additionally, for some level of noise and setting of the α parame-
ter, we would like A, B, and B̂ to be considered equivalent to avoid

over-generalization. Consider ESG models which are fit from a sin-
gle observation of each profile in the Table 1. Because we know the
noise distribution, we can compute EL analytically. Each payoff
observation is a χ-distributed random variable. The expected loss
for each partitioning is given in Table 2.

Partition α = 1 α = 2

A, B, B̂ 3 3

A, {B, B̂} 2 2

{A, B}, B̂ 5/2 4

{A, B̂}, B 5/2 4

{A, B, B̂} 4/3 11/3

Table 2: The expected loss, EL , for various partitions and set-

tings of α for the game in Table 1.

Given the expected loss, the optimal model for the game should
consider A, B, and B̂ equivalent strategies when α is small relative
to the noise variance and only B and B̂ equivalent otherwise. Note
that in all cases, B and B̂ are equivalent in the selected empirical
game model, as desired, and when α varies we have a strict deci-
sion criterion which allows us to decide what magnitude of payoff
differences should distinguish strategies.

4.2 TAC/SCM Analysis
In designing the Deep Maize 2008 strategy, a number of pro-

posed variants underwent a large empirical game-theoretic analy-
sis. The construction of the data set, as well as the methods used to
evaluate each strategy after the observations, are reported in prior
literature [6]. The TAC/SCM scenario defines a six-player simu-
lation with programatically defined strategy sets. After each tour-
nament, teams are encouraged to submit binary versions of their
agent to the agent repository2. After initial analysis, five variants
of Deep Maize 2008 remained as candidates for the final screen-
ing of strategies. These five strategies combined with top strategies
from the 2007 tournament analysis comprise the strategy set used
to select the Deep Maize 2008 tournament strategy. Table 3 lists
the strategies used in this analysis.

Label Description
PH PhantAgent 2007
TT TacTex 2007
DM6 Deep Maize 2008 variant 6
DM20 Deep Maize 2008 variant 20
DM24 Deep Maize 2008 variant 24
DM25 Deep Maize 2008 variant 25
DM28 Deep Maize 2008 variant 28

Table 3: The descriptions of the strategies used in the

TAC/SCM data set.

Each simulation of a specific profile requires 7 processor hours
on a cluster of computers (1 hour running simultaneously on 7 dif-
ferent processors). Observations are screened for defects such as
network outages and other external factors which introduce non-
standard agent behavior. A full six-player, seven-strategy symmet-
ric game has 924 distinct strategy profiles. Even using demand
adjusted profits [6] to reduce variance in the observations’ profit

2Designed and implemented by Joakim Eriksson (Swedish In-
stitute of Computer Science) and Kevin O’Malley (University
of Michigan), and available at http://www.sics.se/tac/
showagents.php.
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vectors, 30 samples per profile are still used for statistical analy-
sis of the deviations and regret. This would require at minimum
194,040 processor hours to complete. On a typical day prior to
the tournament, there were 700 processor hours available. Analy-
sis was usually undertaken from April through the end of June. The
full six-player analysis would require approximately three times the
available amount of processing power assuming a zero failure rate.
However, using a three-player hierarchical reduction [17], the num-
ber of distinct profiles is reduced to 84, a feasible size for analysis.

The Deep Maize test strategies were candidate strategies for the
Deep Maize 2008 agent run in the 2008 TAC/SCM tournament.
DM6 was a slight modification of the strategy used by the Deep
Maize 2007 agent. DM6 replaced the 2007 procurement strategy
by mimicking the PH long term procurement strategy. DM20 was
a departure from DM6 that changed the procurement policy of the
agent in the early portion of the game. DM24 and DM25 varied
the mid-game procurement levels from that of DM6 and DM20.
DM28 used a modified component price prediction algorithm, but
was otherwise identical to DM20. The DM28 component price
prediction algorithm decreased the prediction error of the DM20
predictor by about 1% RMS error [10]. While a 1% improvement
is appreciable, it was not known whether the improvement would
be expressed behaviorally in the relative score of the agent. Using
these candidate strategies and a background set of agents that had
strong support in equilibrium analysis [6], our team needed to make
a decision about which candidate to play in the 2008 tournament.

The first experiment attempts to validate the equivalent strate-
gies model for a reduced set of strategies and a duplicate. A re-
duced observation set was constructed from the observations which
had profiles supported by strategies: PH, TT, and DM20. In order
to replicate a duplicate strategy, we introduced a new strategy la-
bel: DM20C. For all observations involving strategy DM20, we
changed the label to DM20C with probability 0.5. Using the re-
sultant observation set, we ran the ITERATIVE-ESM-SELECTION
algorithm. We expect the algorithm to identify DM20 and DM20C
as equivalent. Table 4 verifies that the algorithm does indeed equate
the two strategies. The table illustrates the algorithm as it pro-
gresses through various iterations. For each ESM model, we report
the expected loss in millions. The single star highlights the best
model in each round and the double star highlights the final model
selected.

Round Best Strategy Space RMSE
0 PH, TT, DM20, DM20C 3.64

{PH, TT}, DM20C, DM20 12.93
{PH, DM20}, TT, DM20C 11.27
{PH, DM20C}, TT, DM20 10.68
PH, DM20C, {TT, DM20} 4.30
PH, {TT, DM20C}, DM20 4.24

� PH, {DM20, DM20C}, TT 3.57
1 PH, {DM20, DM20C}, TT 3.57

TT, {PH, DM20, DM20C} 14.74
{DM20, DM20C}, {PH, TT} 12.92
PH, {DM20, DM20C, TT} 4.73

FINAL �� PH, {DM20, DM20C}, TT 3.57

Table 4: Iterative model selection on the TAC/SCM duplicate

data set.

Building off of the validation in the previous experiment, we
consider the full strategy set from Table 3. Because the ESM se-
lected by the ITERATIVE-ESM-SELECTION algorithm depends on
the observation set partition used by k-fold validation, different

ESMs may be returned on different runs of the algorithm. Over
thirty runs, five distinct ESMs were selected by the algorithm. Ta-
ble 5 gives the frequency of these ESMs. The modal ESM con-
tained the strategy equivalence classes: PH, TT, DM28, and {DM6,
DM20, DM24, DM25}.

Equivalent Strategy Game Freq
PH, TT, {DM6, DM20, DM24, DM25}, DM28 17

PH, TT, {DM20, DM28}, {DM6, DM24, DM25} 7
PH, TT, DM6, {DM20, DM24, DM25}, DM28 5

PH, TT, DM28, {DM20, DM24}, {DM6, DM25} 1

Table 5: ESM frequency table for TAC/SCM data set.

Figure 1 displays the modal ESM with the four distinct regions
separated by the gray barrier. Three regions contain exactly one
strategy, respectively. The fourth central region contains the four
base strategies which the ESM identifies as equivalent: DM6, DM20,
DM24, and DM25. The solid black lines interconnecting the four
strategies represent the relative strengths of the pairwise equiva-
lences as determined by their frequency in Table 5. For instance,
strategies DM24 and DM25 appeared as equivalent in 29 of the
30 selected ESMs and the relationship is drawn with a thick line.
Comparatively, strategies DM6 and DM20 appeared as equivalent
in 17 of the 30 selected ESMs and the relationship is drawn with a
slim line. The second most frequent ESM equated strategies DM20
and DM28 in 7 of the 30 selected ESMs. We denote the weaker
equivalence tendency by the slim, dotted line.

TT PH

DM28

DM20

DM24 DM25

DM6

Figure 1: Modal ESP for TAC/SCM data set.

For the following experiments, we denote the equivalence class
{DM6, DM20, DM24, and DM25} by DM*. We treat the modal
ESM as the true ESM of the TAC/SCM simulation. We would like
to know how restricting observations to a subset of the strategies
affects analysis on the full strategy set. For instance, in designing
and analyzing the strategies for a tournament, it often infeasible to
sample the entire space of 20 or so candidate strategies, even us-
ing the hierarchical reduction technique. Often design and analysis
proceed iteratively, adding strategies to a set of small background
strategies. Bad strategies are pruned, while ones in the set of sup-
port of a sample Nash equilibrium are retained. New candidates
strategies are added and the analysis process starts a new iteration.
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There is no guarantee that strategies previously pruned would not
be in the set of support of the new equilibrium.

Similarly, we would like to know if in a restricted strategy space,
the ESM returned by the algorithm would hold against the full strat-
egy set. There are two types of errors which may occur: a false
positive (Type I) and a false negative (Type II). A Type I error oc-
curs when strategies that should not be equivalent in the full strat-
egy space are selected as equivalent in the restricted space. Type
II errors occur when strategies that should be equivalent in the full
strategy space are selected as distinct in the restricted space. For
instance, if strategies DM6 and DM28 are in the same equivalence
class, the restricted strategy ESM would contain a Type I error. If
instead strategies DM24 and DM25 are in different equivalence
classes, the restricted strategy ESM would contain a Type II error.

Size Type I Error Rate Type II
PH DM28 DM* Error Rate

3

TT 0/5 0/5 0/14
PH 0/5 0/14
DM28 3/14
DM* 1/22

4

TT 0/10 0/10 0/20
PH 0/10 0/20
DM28 6/20
DM* 5/31

5

TT 0/10 0/10 0/15
PH 0/10 0/15
DM28 3/15
DM* 5/21

6

TT 0/5 0/5 0/6
PH 0/5 0/6
DM28 2/6
DM* 3/7

Table 6: Type I and II error rates on TAC/SCM data set for

different strategy set sizes.

We design an experiment to explore the Type II and Type II error
rates of the ITERATIVE-ESM-SELECTION in the TAC/SCM do-
main. For all of the strategies listed in Table 3, we create restricted
strategy spaces of sizes 3 – 6. For each restricted strategy space
of size n, we construct observation sets for each of the

`
7
n

´
cases.

For each of these observation sets, we run the ITERATIVE-ESM-
SELECTION algorithm. We report the rate of each type of error
in Table 6, using the modal ESM in Figure 1 as the standard for
comparison. Note that since the equivalence classes for TT, PH,
and DM28 are singletons, there can be no Type II errors for those
respective classes. Because DM* is composed of multiple under-
lying strategies, we can observe Type II errors. This occurs with
varying rates across the restricted strategy set sizes. For instance,
in the restricted size 3 group, of the 22 simulations in which a Type
II error could occur when an ESM is returned from the selection
algorithm only one contained a false negative. There were no in-
stances in any of the restricted simulations where TT or PH were
incorrectly equated with any of the other strategies. Conversely,
DM28 was incorrectly equated with at least one of the DM* strate-
gies 21%, 30%, 20%, and 33% of the time for sizes 3, 4, 5, and
6, respectively. The values seem relatively large, however consider
that even in the full case, 23% of the time DM20 and DM28 were
in the same equivalence class.

5. DISCUSSION
We have proposed a formal model for evaluating the general-

ization risk incurred when modeling empirical games. We use an
underlying simulation to provide the base game form and observa-
tion set. Our proposed model differs from previous models in that
the empirical game modeling the underlying simulation may depart
from the simulation’s exact player and strategy sets. In particular,
we discuss two forms of strategy set transformations:

• Equivalent strategy models: duplicate (equivalent) copies of
strategies may exist in the simulation space. These strategies
are identified and are equated in model space.

• Factored models: Strategies in the game model are composed
of factors. These factors form strategically independent fac-
tor games whose utilities are an additive decomposition of
the composite game.

For equivalent strategy models we propose an iterative algorithm,
ITERATIVE-ESM-SELECTION, which is used to heuristically se-
lect an ESM for modeling a simulation. We experimentally evalu-
ate the properties of the ITERATIVE-ESM-SELECTION algorithm
on a data set of TAC/SCM observations. Using the algorithm, we
select an ESM to model TAC/SCM given the 2008 tournament can-
didate strategies for our agent. Our first test experimentally con-
firmed that the ITERATIVE-ESM-SELECTION algorithm identifies
identical, relabeled strategies as equivalent. Our second test dis-
covered an equivalence relation involving four out of the five DM
candidate strategies. Additionally, our reduced strategy error rate
tests confirm the equivalence classes are identified even in the re-
duced strategy case.

This result is particularly useful due to its implications in re-
ducing search efforts required in TAC/SCM game-theoretic analy-
sis. If ESMs hold in reduced strategy spaces, we can analyze small
cliques of strategies for strategy equivalences. If some equivalences
are found, they are likely to hold in the full strategy set, thereby re-
ducing the need to test multiple strategies in the same equivalence
class. Identifying equivalences can yield a substantial reduction
in the required number of observations to fully analyze the sce-
nario. Leading into the 2008 competition, DM20 was identified as
a promising strategy. DM28 was a relatively late breaking addi-
tion to the candidate set. Most of the available cycles nearing the
start of the tournament were devoted to comparing the difference
between DM20 and DM28, which had similar support in a sam-
ple Nash equilibrium for the empirical game. DM20 was chosen
over DM28 since it had been tested thoroughly, whereas DM28,
being a relative last minute update, had undergone only minimal
testing outside of pairwise comparisons. Had the results of the
ITERATIVE-ESM-SELECTION algorithm been available, those cy-
cles could have been devoted to testing other promising candidates.

Davis et al. [4] describe an algorithm for finding an additive
type of independence structure (factoring) in games when the gen-
eral game form is not known a priori. In addition, they show that
an approximate factoring can be found in polynomial time. The
algorithm assumes knowledge of the actual payoffs and does not
account for noise which occurs in empirical analysis setting. Our
complementary methodology allows for the discovered factored
structure to be tested for generalization risk. Thus, there is potential
for using the generalization risk calculations to guide the learning
algorithm which proposes the factored structure.

In this analysis we have primarily discussed empirical game mod-
els for transforming the strategy sets. Another potentially interest-
ing transformation would involve modifying the number of players
in the game. Hierarchical game reduction [17] does precisely this,
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and has been shown to be useful, especially in TAC related settings
[6]. Applying this generalization risk minimization technique to
the problem of finding the optimal reduction could be fruitful.

Finally, search techniques for selecting observation sequences
[7, 12, 13, 11] in empirical games have increased the size of the
strategy space researchers can feasibly analyze. Jordan et al. and
Walsh et al. try to estimate the value of an additional sample of
a profile and select the profile which optimizes the value in ex-
pectation. These algorithms search over the profiles in the profile
space to identify stable, low regret, profiles. Because researchers
are primarily interested in stable profiles, these search algorithms
will more frequently observe “worthwhile” regions of the profile
space saving the observational cost of regions that are viewed as
less fruitful. Another potential search technique would search over
the space of empirical game models instead of directly searching
the profile space, selecting profiles to refute the current candidate
using generalization risk as the decision criterion. One benefit of
this type of search is that if a compact structure exists for the simu-
lation and it is discovered, payoff estimates are directly formed for
regions of the space which are unobserved unlike with the existing
search algorithms.
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